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A revolution in Biology: Omics technologies

* Genomics: Genome™* sequencing, quantification of expression of genes, identification of variants
* Proteomics : Identification, quantification of proteins® within a cell, tissue, organ etc
* Metabolomics: Identification and quantification of metabolites

etc...

A HUGE AMOUNT OF DATA ORGANIZED or NOT in DATABASES

* Genome : All the genetic material of an organism, composed of DNA. A gene codes for a specific protein.

* Protein: Amino acid polymers folded in a 3D structure that supports the function*

* Protein Functions: Catalyze biochemical reactions, transport molecules, synthesize and repair DNA, receive and
send chemical signals, respond to stimuli, provide structural support
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What to do with this data?

* Machine Learning- Deep Learning Approaches to:
e Predict the 3D structure of proteins from amino acid sequence (<=> Fonction)
* Understand and Predict the impact of mutations in relation with a disease
=> DeepMind Successes (Nobel Prize in Chemistry (2024)), Fair Meta Al
* Design new proteins ( D. Baker, Nobel Prize in Chemistry (2024),
To name a few.... :::

Article RESEARCH ARTICLE
Highly accurate proteinstructure prediction TR
with AlphaFold . . .
Accurate proteome-wide missense variant effect
e e e et prediction with AlphaMissense
Anna Potapenko’ ridgl , Clemens Meyer™, Simon A. A. Kohl
Accepted: 12 July 2021 Andrew J. Ballard", Andrew Cowie'*, Bernardino Romera-Paredes™, Stanislav Nikolov',
Published online: 15 July 2021 o e e G Jun Cheng*, Guido Novati, Joshua Pant, Clare Bycroftt, Akvilé Zemgulytét, Taylor Applebaumf,
Openaccess geo..s.nm?:;i,ﬁmu:i::}gaow.mw,mw.se.ﬁ.',xm,xmummn Alexander Pritzel, Lai Hong Wong, Michal Zielinski, Tobias Sargeant, Rosalia G. Schneider,
B Check for updates Andrew W. Senior, John Jumper, Demis Hassabis, Pushmeet Kohli*, Ziga Avsec*
ial tolife.and und ing their structure can facilitatea

Nature, 596, 583-589-(2021) Science, 381, 1303 (2023)
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Successes but ... High Computational Cost and High
Memory Ressources

RESEARCH

nature communications a
STRUCTURE PREDICTION
Evolutionary-scale prediction of atomic-level protein . _

Article https://doi.org/10.1038/541467-024-51844-2

:’"ftf:f .‘.'Th: 'f"f?ffe T°:':' I Fine-tuning protein language models boosts

Nikita Smetanin’, Robert Verkuil’, Ori Kabeli", Yaniv Shmueli’, Allan dos Santos Costa®, predictions acrOSS diverse taSkS

Maryam Fazel-Zarandi', Tom Sercu, Salvatore Candido’, Alexander Rives'*

Recent advances in machine learning have leveraged evolutionary information in multiple sequence

alignments to predict pro.tein structure. We .demonstrate direct inference of full atomic-level Received: 25 January 2024 Robert Schmirler 23, Michael ®' & Burkhard Rost @45
protein structure from primary sequence using a large language model. As language models of

protein sequences are scaled up to 15 billion parameters, an atomic-resolution picture of protein Accepted: 15 August 2024

struf:ture en.1er.ges in the learnen)il rgpresen?ations.:!’his results in an order-of<magnituqe af:celeration Published onine: 28 August 2024 Prediction methods inputting embeddings from protein language models

of high-r structure pr which large-scale structural characterization of have reached or even surpassed state-of-the-art performance on many protein
meta.ge.nomlc proteins. Weeap7ply.t!1|s cap:ablllty to. constrl:lct the ESM Meta'gif\om|t:zzA;Ias. b.y | ™ |Check for updates prediction tasks. In natural language processing fine-tuning large language
predicting structures for >617 million g protein seq >225 million models has become the de facto standard. In contrast, most protein language

that are predicted with high confidence, which gives a view into the vast breadth and diversity of

natural proteins. model-based protein predictions do not back-propagate to the language

model. Here, we compare the fine-tuning of three state-of-the-art models
(ESM2, ProtT5, Ankh) on eight different tasks. Two results stand out. Firstly,

“We present an evolutionary-scale structural characterization of taskspecific supervised fine-tuning almost always improves downstream

. A . A predictions. Secondly, parameter-efficient fine-tuning can reach similar
metagenomic proteins that folds practically all sequences in impr consuming substantially fewer resources at up to 45-old

. . . acceleration of training over fine-tuning full models. Our results suggest to

MGn|fy90 (32), >617 million proteins. We were able to always try fine-tuning, in particular for problems with small datasets, such as

: : : : for fitness landscape predictions of a single protein. For ease of adaptability,
complete this characterization in 2 weeks on a heterogeneous o A S ks o s dl o W i s
cluster of 2000 graphics processing units (GPUs), which work for per-protein (po - ' .

o ” a > E b

demonstrates scalability to far larger databases A Fine-sring - GPU Memory Raubrernans
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Successes and Limits:

* AlphaFold’s Family: can predict the 3D structures of proteins and complexes
(Protein-Protein, Protein-DNA and Protein-ligands) harbouring known folds but

also novel protein folds

* AlphaFold’s Family: can’t predict neither the impact of mutation on the 3D

structure nor alternative conformations resulting from the dynamics of the

proteins, which is EXTREMELY IMPORTANT FOR THE BIOLOGICAL FUNCTION

(ACTUALLY, it is possible with AlphaFold by manipulating and guiding the search but with very

limited success)



Limits: Case of Conformational Changes

Example : The Major Facilitator Family (MFS) Transporters

E. coli D-galactonate:proton symporter

=>ALTERNATIVE APPROACHES TO ACCESS THIS CONFORMATIONAL LANDSCAPE:
MOLECULAR DYNAMICS SIMULATIONS
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EXPLORING THE CONFORMATIONAL LANDSCAPE OF A

BIOLOGICAL MACROMOLECULE

* “Ingredients” of Molecular Dynamics Simulations:

e Based on the solution of the Newton’s Equations (Second Law)
* The force acting on a particle* is equal to the mass*acceleration :

* The force is the equal to the opposite of the gradient of the energy V of
this particle interacting with the other particles:

= An algorithm able to integrate efficiently motion equations:
= A model to describe the physical interactions.

* Particle: atom, residue, group of residues => different resolution scales

27/03/2025
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A few examples of applications:

27/03/2025
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“PRACE support to mitigate impact of COVID-19 pandemic’

Biomolecular research to understand the mechanisms of the virus infection

Bioinformatics research to understand mutations, evolution, etc.

Bio-simulations to develop therapeutics and/or vaccines

Epidemiologic analysis to understand and forecast the spread of the disease

Other analyses to understand and mitigate the impact of the pandemic
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Covid19 Spike2 Protein & Theoretical approaches

Accelerating COVID-19 Research Using Molecular Dynamics Simulation, Aditya K. Padhi, Soumya Lipsa Rath,
and Timir Tripathi, The Journal of Physical Chemistry B 2021 125 (32), 9078-9091

otein Interactions Conformational Dynamics

Wild-type

COVID-19 Research Using
Molecular Dynamics Simulations

Supercomputer Assisted
Molecular Simulations

Pathogenic Effect
of Mutations

27/03/2025 10
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An Emblematic Case: Covid19 Spike2 Protein
Cryo—electron tomography of SARS-CoV-2 virions.
FETRIPNTEREI) (RS R ' ' In situ structural analysis of SARS-

CoV-2 spike reveals flexibility
mediated by three hinges

L]
Science e il e

HOME > SCIENCE > VOL.370,NO.6513 > INSITUSTRUCTURAL ANALYSIS OF SARS-COV-2 SPIKE REVEALS FLEXIBILITY MEDIATED BY THREE HINGES

3  RESEARCH ARTICLE f X in o % O X

In situ structural analysis of SARS-CoV-2 spike reveals
flexibility mediated by three hinges

BEATA TURONOVA rb , MATEUSZ SIKORA , CHRISTOPH SCHURMANN QE} , WIM J. H. HAGEN , SONJA WELSCH @ , FLORIAN E. C. BLANC (&), SOREN VON BULOW

, MICHAEL GECHT ({3, KATRIN BAGOLA (f3), [...], AND MARTIN BECK () +10 authors | Authors Info & Affiliations
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Molecular dynamics simulations coupled to experiments.

from different tomograms. Shorter distances are concomltant with a

stronger bending of the hinges and a lateral displacement of the stalk.
(Fig. 4 from Science 2020, 370(6513): 203-208. )

| 2.5-us-long all-atom MD simulation of a 4.1 million atom system containing four
glycosylated S proteins anchored into a patch of viral membrane and embedded
27/03/2025 in aqueous solvent (Fig. 3 from Science 2020, 370(6513): 203—208.




Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein in a Viral

Membrane
RBD/NTD ]CTC e

Structure, Dynamics, Receptor Binding, and Antibody Binding of the
Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein in a Viral
Membrane

Yeol Kyo Choi,” Yiwei Cao,” Martin Frank,” Hyeonuk Woo, Sang-Jun Park, Min Sun Yeom,
Tristan I Croll, Chaok Seok, and Wonpil Im*

Up: 6VSB Down: 6VXX

g g HR2 Linker sz I . [Ty
?:-/ R Three monomers composed of 2 subunits S1 (Responsible of
¥ Receptor Binding) & S2 (membrane fusion) separated by a
$ cleavage site.
l HR2-TM
S1: Signal Peptide, two models (Up & Down) for Receptor

Binding Domain( RBD)/Nter Domain (NTD),
S2: Fusion Peptide, HR2 (Heptad repeat) linker, HR2-TM
(Transmembrane Region) , and Cytoplasmic (CP)

cpP

All-atom MD simulations of the fully glycosylated full-length S
protein in a viral bilayer, multiple ps-long trajectories: RBD in
N5 \ open and closed states, Different models of S stalk (16 models),
27/03/2025 Glycosylated and non-glycosylated S head-only systems. 13

|




Membrane Co.0s

normal — EXP
it ww Resampled 6, & 6,
T == Resampled 6,
X . 0.04 - Resampled 6,
. % 300
pEIEN R 20.03-
- 50 ©
AR Tilt angle :, .‘;
' '-5 N : -§
\ , & 0.02-
91 ' 2
Y i

/&

" foutd N LA 0.00 ———
i o Y g . 0 10 20 30 40 50 60 70 80 90
b RNy Tilt angle(®)

27/03/2025 Catedras Program 14



A putative model of Spike with ACE2 receptor

27/03/2025

Important Results

- Glycan Impact:
- (some) on RBD and NTD Motions => S Trimer
Stability
- Shields for immune evasion
- Contribution to antibody binding.

15
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evious Article Next Article

@ ssie  AGranted PRACE Project:
o “Conformational spaces of SARS-CoV-2 drug targets

High-resolution mining of the SARS- M) Check for updates . . .
CoV-2 main protease conformational J . P P | q uema |, SO rbo nne U nive rS|ty
space: supercomputer-driven

unsupervised adaptive sampling}

7

Théo Jaffrelot Inizan, 2 Frédéric Célerse, ab Qlivier Adjoua,? Dina El Ahdab, ¢ Luc-

ly,d Chengwen Liu, gyuRen e Matthieu Montes,f Nathalie Lagarde,’ Louis

Lagardére *29 Pierre Monmarché *2¢ and Jean-Philip Piquema *aeh

Main features: Main Results
* The use of a polarizable force field, which is supposed ¢ Efficient Sampling

to overcome current force field limitations * Role of water molecules

« A density-driven unsupervised adaptive sampling  Validation of some results with experimental data

* Identification of a new druggable pocket.
method that exploits pre—exascale machine and 100 GPUs &6 P

Computer Resources: HPE Jean Zay Supercomputer

(IDRIS, GENCI, France): 15.14 ps in two weeks.
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. Journal of Molecular Graphics and
: Modelling

Volume 126, January 2024, 108666

ELSEVIER

A repository of COVID-19 related
molecular dynamics simulations and

utilisation in the context of nsp10-nsp16

antivirals

Julia J. Liang 2 © €, Eleni Pitsillou ® ¢, Andrew Hung €, Tom C. Karagiannis 2° ¢4 &

300 Classical MD. : High performance

computing services

27/03/2025

SARS-CoV-2 related molecular dynamics (MD)
simulation trajectories

~ 300 trajectories

Repository of MD simulations for the SARS-CoV-2 main protease,
papain-like protease, helicase, nsp10-nsp14 complex, nsp10-nsp16
complex, and spike protein with angiotensin-converting enzyme 2
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Beyond Covid :

A@LAS

Home Search Browse About Example Download API Contact

JOURNAL ARTICLE

: et - Welcome to the ATLAS database
ATLAS: protein flexibility description from
o o o o . Atlas of proTein moLecular dynAmicS
atomistic molecular dynamics simulations & : d
ATLAS gathers standardized molecular dynamics simulations of protein structures accompanied by their analysis in the form of interactive diagrams and trajectory
Yann Vander Meersche, Gabriel Cl’etin, Aria G heeraert, Jean-Ch ristophe Gelly DA ) visualisation. All the raw trajectories as well as the results of analysis are available for download.
Tatiana Ga lOCh kina DA See an example of the database pages here.

Please use the following reference when citing the ATLAS database:
Nucleic Acids ResearCh, Volume 52, Issue Dl, 5 January 2024, Pages D384—D392, Vander Meersche, Y., Cretin, G., Gheeraert A., Gelly, J. C., & Galochkina, T. (2023). ATLAS: protein flexibility description from atomistic molecular dynamics
. P e e e et o s simulations. Nucleic Acids Research, gkad1084. https://doi.org/10.1093/nar/gkad1084

The user can ¢

' Afias

www.dsimb.inserm.fr/ATLAS

ATLAS: A database collecting protein MD

. . . > 1500 all-atoms
dynamics simulations:

MD simulations

10 M Hours-Cpu GENCI Juliot-Curie's Irene Rome ‘ Interactive;fiaxbity ahalysis

supercomputer (TGCC/CEA), utilising dual-processor /

compute nodes running at 2.6 GHz with 64 cores Download MD X N
and analysis oo s | I

per processor.
Trajectory
visualisation

27/03/2025 19

~2000 proteins, 100 ns x 3 replicates




A few other important biological questions:

27/03/2025
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Identification of the ion pathway throug the Glycine Receptor

SCIENCE ADVANCES | RESEARCH ARTICLE

Table 1. Computational electrophysiology. The experiments carried out on the GlyR-a1 cryo-EM construct (i.e.,, devoid of ICD) in the WT and the K104E

NEUROPHYSIOLOGY mutant are presented. Numerical results on the ion translocating current, which correspond to the number of chloride permeation events cumulated over
Lateral fenestrations in the extracellular domain of the multiple simulation runs, are given in table S1. All MD simulations were produced in the presence of a 150 mM symmetrical concentration of NaCl.

glycine receptor contribute to the main chloride Voltage (mV) -250 -200 -150 -80 80 150 200 250  -250K104E 250K104E  Total
permeation pathway Cumulative

Adrien H. Cerdant, Laurie Peverini?, Jean-Pierre Changeux?*4, simulation time 2045 1215 2520 926 2077 1663 2058 1442 1168 804 15918
Pierre-Jean Corringer?*, Marco Cecchini'* (ns)

No. of independent

- . “ 4 10 6 6 10 6 6 74

Identification of a central vestibular cavity in the
ECD of GlyR that concentrates chloride at the
entrance of the ion-transmembrane pore

15

el

. Lateral fenestrations connect the
extracellular milieu with the central
vestibule for chloride translocation in GlyR

Position a%ong the tunnel (A)

-5

-10

-1%
4 6 B
Tunne! radius (A}
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Jedélé S et al, JCIM 2025
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Question: What is the dynamics o
different states? |

> 7. Millions CPU core Genci + 10 000 GPU

27/03/2025
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Main results

* Opening of the channel in the presence of PIP2 * |dentification of Lateral Fenestrations
S 2 & R
= cg‘sp\fytgf;#ﬁgfz@?SS\ép6§p¥ﬂ25§;§P¢§>§§P & [ro—
® aail solvent
£ .2 | v282 restriction &
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o1 Y I Y vesti- n | 285 - VARKLEFNKAEKHVHNFMMDIQY TKEM- 311
s ne1[196  AKCYMNTHPGRLER 500 dinraagesy
c.  CaMN-obes unbound (1) CaM N-lobes bound (Il Il nv2] 162 IGALNQVRERHWEVAKLYNN 201 2 rsoain
n |3s4.VRL 5:291 (n+1), 196-201 (n+2)
1) closed (2) ope (3) maximally open o e e | {20
(H ‘ oo L 1 ne2|184-ALNQVRE-190 8 285200 (n+1)
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Cancer & Antibody Design

a. Fab-RB49 b. Fab-xiRB49 c. Fab-xiRB49-P125T

HUMAN VACCINES & IMMUNOTHERAPEUTICS L-CDR1
2023, VOL. 19, NO. 3, 2279867

https://doi.org/10.1080/21645515.2023.2279867

Taylor & Francis

Taylor & Francis Group

BRIEF REPORT 3 OPEN ACCESS | ® Chockorpsts

The functionality of a therapeutic antibody candidate restored by a single mutation
from proline to threonine in the variable region

Marie Hautiere (2%, Irene Maffucci (9°*, Narciso Costa (), Amaury Herbet(°, Sosthene Essono (¢,
Séverine Padiolleau-Lefevre(":°<, and Didier Boquet(:?

*Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, Gif-sur-Yvette, France; "Centre de Recherche de
Royallieu, CNRS UMR 7025, Génie Enzymatique et Cellulaire, Compiégne Cedex, France; ‘Centre de Recherche de Royallieu, Sorbonne Universités,
Université de Technologie de Compiégne, Génie Enzymatique et Cellulaire, Compiégne Cedex, France; “Medical Biotechnology Engineering LLC,
Malden, MA, USA

RB49 is an antibody targeting the endothelin B
receptor, a GPCR molecule that plays a role in
tumour cancel progression. Modificatiion
(chimerization) is required to become a human
therapeutic agent but this may alter the efficiency.

O
Representative structures of the most populated cluster of (a) Fab-RB49, (b) Fab-
xiRB49, and (c) Fab-xiRB49-P125T. The heavy chain and the light chain are

By combining experiments, molecular modelling represented in dark and light gray, respectively. CDR1, CDR2, and CDR3 are
and molecular dynamics simulations (HS colored red, yellow, and purple, respectively. The residue in position 125 (either

simulations), the authors identified the key role of proline or threonine) is reprgsented as-ball and sticks and colored .mage‘nta. The
) ) ) . hydrogen bond network within the region between the heavy chain variable and
a Proline residue in the loss of recognition. constant regions is indicated as dotted orange lines, while the interactions
Mutation to Thr restores the function. involving the H- and L-CDRs mentioned in the manuscript are indicated as dotted
cyan lines. The indicated hydrogen bonds come from the analysis of the 3
27/03/2025 simulations for each system. 25



Summary : Methods and Systems studied in the
community

Methods:
* Molecular Dynamics Simulations (Classical and Enhanced Sampling),
* Docking
* now Large Scale 3D structure Prediction with AlphaFold, (AlphaFold)

Systems :
* Complexes and assemblies (protein/protein, peptide/protein, nucleic acid/protein)
* Soluble & Membrane Proteins, Lipids, carbohydrates
* Protein/Drug interaction (Drug Design)

Force Fields: Classical or Polarizable, All-atom or Coarse Grained, QM/MM

Free Energy calculations & now evaluation of Kinetics Constants;



Summary: Example of High Computational Needs

A summary of GENCI Committee “Dynamique moléculaire appliquée a la biologie »

49 applications assessed (calls A15 and A16) by 17 experts
160 Mh CPU allocated
9 Mh GPU allocated

mainly academic laboratories but also start-ups (subject to publication)



Example of High Computational Needs in constant evolution

* A summary of GENCI Committee “Dynamique moléculaire appliquée a la biologie »
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Deep Learning, Structural Bioinformatics and Medical
Applications:

 Example 1:
* Aim: to speed up current applications in structural bioinformatics, i.e.
homologous protein searches, secondary structure prediction, cell localisation

prediction, prediction of different levels of protein structure (fold,
superfamily, family), etc.

* Strategy: Development of an auto-encoder to reduce the dimensionality of internal protein
representations (embeddings) derived from the best protein language models (PLMs) The
reduction in dimensionality must be achieved while maintaining the maximum possible

information from the original embeddings.

. =>25 000 GPU hours type A100 with 80 Gb Memory (OParallelized)
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Deep Learning, Structural Bioinformatics and Medical
Applications:

* Example 2:
* Aim: to predict pathogenicity of mutations
* Challenge: Protein of ~ 500 residues => 19x500 => For 10 000 proteins ~ 100 million variants
* Strategy:Use three Protein Language Models (PLM), to generate the variant embeddings
=> 100 million embeddings per PLM.
 A100 GPU: [ 3000-7000] hours depending on the PLM => ~13 000 hours GPU
B . H100 GPUSs: 7 000 H

Mutation Heatmap
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